bitget

Bitget交易所

Bitget交易所是全球前4大交易所之一、打新活动多、领空投到手软,新用户注册即可领取BGB空投

点击注册 立即下载

区块链原理图可能是相关行业人士都值得关注的知识,在此对区块链的基本原理进行详细的介绍,并拓展一些相关的知识分享给大家,希望能够为您带来帮助!

先放一张以太坊的架构图:

在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

2、无法解决消息篡改。

如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

2、同样存在无法确定消息来源的问题,和消息篡改的问题。

如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

1、当网络上拦截到数据密文2时, 由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。

2、当B节点解密得到密文1后, 只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

经两次非对称加密,性能问题比较严重。

基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要, 之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1, 比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢? 有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后 对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

那么如何生成随机的共享秘钥进行加密呢?

对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥 和 临时的非对称私钥 可以计算出一个对称秘钥(KA算法-Key Agreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥 与 B节点自身的私钥 计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入 Nonce ),再比如彩虹表(参考 KDF机制解决 )之类的问题。由于时间及能力有限,故暂时忽略。

那么究竟应该采用何种加密呢?

主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

密码套件 是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

批量加密算法:比如AES, 主要用于加密信息流。

伪随机数算法:例如TLS 1.2的伪随机函数使用MAC算法的散列函数来创建一个 主密钥 ——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

握手/网络协商阶段:

在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

身份认证阶段:

身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

消息加密阶段:

消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

消息身份认证阶段/防篡改阶段:

主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC :Elliptic Curves Cryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成 公钥、私钥的算法。用于生成公私秘钥。

ECDSA :用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。 主要用于身份认证阶段 。

ECDH :也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。 主要用于握手磋商阶段。

ECIES: 是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH), H-MAC函数(MAC)。

ECC 是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。 ECDSA 则主要是采用ECC算法怎么来做签名, ECDH 则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。 ECIES 就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

meta charset=”utf-8″

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

所有的非对称加密的基本原理基本都是基于一个公式 K = k G。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法 就是要保证 该公式 不可进行逆运算( 也就是说G/K是无法计算的 )。 *

ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据k G计算出我们的公钥K。并且保证公钥K也要在曲线上。*

那么k G怎么计算呢?如何计算k G才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

首先,我们先随便选择一条ECC曲线,a = -3, b = 7 得到如下曲线:

在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如2 2 = 2+2,3 5 = 5+5+5。 那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

那么P+Q+R = 0。其中0 不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

同样,我们就能得出 P+Q = -R。 由于R 与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

P+R+Q = 0, 故P+R = -Q , 如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

从上图可看出,直线与曲线只有两个交点,也就是说 直线是曲线的切线。此时P,R 重合了。

也就是P = R, 根据上述ECC的加法体系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0

于是乎得到 2 P = -Q (是不是与我们非对称算法的公式 K = k G 越来越近了)。

于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

假若 2 可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

那么我们是不是可以随机任何一个数的乘法都可以算呢? 答案是肯定的。 也就是点倍积 计算方式。

选一个随机数 k, 那么k * P等于多少呢?

我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描 述成二进制然后计算。假若k = 151 = 10010111

由于2 P = -Q 所以 这样就计算出了k P。 这就是点倍积算法 。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

至于为什么这样计算 是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了 整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

在曲线上选取一个无穷远点为基点 G = (x,y)。随机在曲线上取一点k 作为私钥, K = k*G 计算出公钥。

签名过程:

生成随机数R, 计算出RG.

根据随机数R,消息M的HASH值H,以及私钥k, 计算出签名S = (H+kx)/R.

将消息M,RG,S发送给接收方。

签名验证过程:

接收到消息M, RG,S

根据消息计算出HASH值H

根据发送方的公钥K,计算 HG/S + xK/S, 将计算的结果与 RG比较。如果相等则验证成功。

公式推论:

HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG

在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C = A+C+B = (A+C)+B。

这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考 Alice And Bob 的例子。

Alice 与Bob 要进行通信,双方前提都是基于 同一参数体系的ECC生成的 公钥和私钥。所以有ECC有共同的基点G。

生成秘钥阶段:

Alice 采用公钥算法 KA = ka * G ,生成了公钥KA和私钥ka, 并公开公钥KA。

Bob 采用公钥算法 KB = kb * G ,生成了公钥KB和私钥 kb, 并公开公钥KB。

计算ECDH阶段:

Alice 利用计算公式 Q = ka * KB 计算出一个秘钥Q。

Bob 利用计算公式 Q’ = kb * KA 计算出一个秘钥Q’。

共享秘钥验证:

Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q’

故 双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

在以太坊中,采用的ECIEC的加密套件中的其他内容:

1、其中HASH算法采用的是最安全的SHA3算法 Keccak 。

2、签名算法采用的是 ECDSA

3、认证方式采用的是 H-MAC

4、ECC的参数体系采用了secp256k1, 其他参数体系 参考这里

H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:

在 以太坊 的 UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

其中,sig是 经过 私钥加密的签名信息。mac是可以理解为整个消息的摘要, ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

其UDP的整个的加密,认证,签名模型如下:

区块链消息,比特币之于区块链如同电子邮件之于互联网。众所周知,电子邮件在人类信息传播和交流史上首次实现了及时、免费、可验证地把数据发送给世界上其他任何人这一功能,发送者和接收者双方都能够保存电子邮件中发送的数据副本。然而,双方保留的电子邮件数据副本也成为在线价值转移的固有缺陷,因为双方都拥有其价值。因此,必须确保价值不被双重支付授信的第三方机构存在,例如,银行、证券交易所、清算中心或公证机构。而比特币作为互联网协议,交易双方可以即时、安全地相互转移价值,而不需要授信第三方等中介组织的存在,从而减少了交易成本并提高了交易效率。小编现在为大家整理区块链技术原理示意图,以及相关技术原理。

从字面上看,区块链是由一连串使用密码学方法产生的数据块组成的分布式账簿系统,每个数据块都包含大量的交易信息,用于验证其信息的有效性并生成下一个区块。这些区块按生成顺序前后排列,同时,每个区块都是一个节点。

区块链的显著特点是没有作为中央服务器的第三方监管,区块中的交易信息不能被更改。区块中包含的信息可以是金融交易,也可以是其它任何数字交易,包括文档。而长期以来支配人类社会商业世界的互联网商业模式,其成功依赖于作为处理和调解电子交易的授信第三方金融机构,授信第三方的作用是验证、保护并保存交易记录。

尽管如此,欺诈性在线交易仍大量存在,需要授信第三方居间调解,从而导致较高的交易成本。而基于区块链技术的比特币使用加密证明,而非通过授信第三方,使愿意交易的各方均可以通过互联网实现在线交易。

每一次交易都可通过数字签名进行保护,并发送至使用发送者的“私钥”进行数字签名的接收者的“公钥”。比特币,即加密货币的所有者需要证明其“私钥”的所有权才能在线消费、交易。接收数字货币的一方使用发送者的“公钥”在交易上验证数字签名,即,对方的“私钥”所有权。

每一项交易都被广播到比特币网络中的每个节点,并在验证后记录在公共账本中。而且在每一项交易被记录在公共账本前,都需要对其进行有效性验证,因此,验证节点需要在记录每一项交易前确保两件事情:即,

(1)消费者拥有对其加密电子货币的签名认证;

(2)消费者账户中有充足的加密电子货币。

图1展示了基于区块链技术的交易过程和原理。

希望这个回答对你有帮助

1、区块链是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了过去十分钟内所有比特币网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。是比特币的底层技术,像一个数据库账本,记载所有的交易记录。

2、广义定义:利用加密链式结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用自动化脚本代码(智能合约)来变成和操作数据的一种全新的去中心化基础架构与分布式计算范式。

3、狭义定义:按照时间顺序将数据区块以链条的方式组合成特定数据结构,并以密码学方式保证的不可篡改和不可伪造的去中心化共享账户。

4、区块链的特点:去中心化:区块链数据的验证、记账、存储、维护和传输等过程均是基于分布式系统机构,采用纯数学方法而不是中心结构来建立分布式节点间的信任关系,从而形成去中心化的可信任的分布式系统。

5、时序数据:区块链采用带有时间戳的链式区块结构存储数据,从而为数据增加了时间维度,具有极强的可验证性和可追溯性。

6、集体维护:区块链系统采用特定的经济激励机制来保证分布式系统中所以节点均可参与数据区块的验证过程,并通过共识算法来选择特定的节点将新区快添加到区块链。

7、可编程:区块链技术提供灵活的脚本代码系统,支持用户创建高级的智能合约、货币或其他去中心化应用。

8、安全可信:区块链技术采用非对称密码原理对数据进行加密,同时借助分布式系统各节点的工作量证明等共识算法形成的强大算力来抵御外部攻击、保证区块链数据不可篡改和不可伪造,因而具有较高的安全性。

9、区块链应用场景:数字货币:以比特币为代表,本质上是由分布式网络系统生成的数字货币,其发行过程不依赖特定的中心化机构。

下面就以比特币为例进行说明:

区块链(Blockchain)是比特币的一个重要概念,本质上是一个去中心化的数据库,同时作为比特币的底层技术。区块链是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一次比特币网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。

区块链在网络上是公开的,可以在每一个离线比特币钱包数据中查询。比特币钱包的功能依赖于与区块链的确认,一次有效检验称为一次确认。通常一次交易要获得数个确认才能进行。轻量级比特币钱包使用在线确认,即不会下载区块链数据到设备存储中。

比特币的众多竞争币也使用同样的设计,只是在工作量证明上和算法上略有不同。如,采用权益证明和SCrypt等等。

除此之外,莱特币、以太坊、微盟币、狗狗币、瑞泰币等数字加密货币也都是利用区块链的技术。

最近很火的区块链技术到底是什么样的技术呢?区块链技术是被人们认为在金融科技方面最闪亮的一颗星,而且在未来还可能再继续发展区块链技术,?它有非常多的特点,包括数据的一个分布,以及数据的信任度和集体共识机制,最重要的话就是公开透明以及匿名隐私等这一些非常有特点的特性,根据这一些区块链里面的数据,我们可以得出当代社会的一些基本的信息。

?要搞懂区块链它的一个工作原理首先就要明白几个概念,第一个概念就是什么是区块,区块就是一些数据,它已经是正确的了,然后就被电脑输入到了数据货币网络上面,永久的被记录在这一个平台上面,也就是说当我们有需要的时候去寻找这一些资料,它就可以被找到,所以区块的意思呢,就是一些数据是正确的,然后被添加到了区块链的末端,一旦被添加到区块链的末端就改变不了也移除不了。所以区块链它的功能是非常强大的。还需要了解一下区块的结构表。

?区块的结构表,由不同的字节所组成,包括4个字节以及80个字节的这一些区块,它代表着不同的数据,这一些专业术语可能比较难搞懂,但是基本的意思就是区块是由这些字符所决定的,不同的字符长度它代表着不同的信息。还有最后一个叫做区块头,区块头的话是由元数据所组成的。当我们在浏览器中查询一些区块信息的时候,就可以看到像字符长度以及它的区块头是由什么组成的等等信息,通过这些信息的话,大概就能了解里面所有的内容是什么。

?区块链技术就是这么一个安全科学的数据库。可以简单的把它理解为一个已经是权威数据库了,它里面的基本内容都是属实的,都是通过别人所验证以及审核过的。在金融科技方面的话,会非常的容易找到一些想要的数据,这对于做生意的人来说非常的好。

区块链是一种分布式共享记账的技术,它要做的事情就是让参与的各方能够在技术层面建立信任关系。

区块链可以大致分成两个层面,一是做区块链底层技术;二是做区块链上层应用,即基于区块链的改造、优化或者创新应用。

区块链的核心意义到底是什么,我们的理解是,区块链最核心的意义是参与方之间建立数据信用,通过单方面的对抗,在明确规定下打造单方面的生态共同保障完整机会,这是一个体系,这种建立可以结束没有区块链之前的问题,没有区块链之前,在数据共享的时候是无法做到有新的共享,即使做定向也只是给你一个接口,区块链有了以后,让参与方是实现信用的共享,欢迎关注兄弟连区块链学院。

经过以上对区块链原理图的分享介绍,相信你对区块链的基本原理有了大概的了解,想知道更多关于区块链原理图的知识,关注,我们将持续为您分享!

bitget

Bitget交易所

Bitget交易所是全球前4大交易所之一、打新活动多、领空投到手软,新用户注册即可领取BGB空投

点击注册 立即下载

Bitget交易所

Bitget交易所V

区块链原理图可能是相关行业人士都值得关注的知识在此对区块链的基本原理进行详细的介绍并拓展一些相关的知识分享给大家希望能够为您带来帮助先放一张以太坊的架构图在学习的过程中主要是采用单个模块了学习了解的包括密码学网络协议等直接开始总结秘钥分配问题也就是秘钥的传输问题如果对称秘钥那么只能在线下进行秘钥的交...

文章数
0 评论数
浏览数

最近发表

热门文章

标签列表

目录[+]